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SUMMARY 
4 

An analysis is made of solidification within a flowing medium where a convective 
boundary condition is imposed on the moving interface of the solidifying layer. The con- 
figuration is one in which a frozen layer forms in  a warm liquid as it is chilled while 
flowing over a plane wall that is convectively cooled on the opposite side. The analysis 
includes the heat capacities of both the wall and frozen layer. The solution for frozen 
layer thickness variation with time is given as a closed-form algebraic equation and in 
graphical form so that results can be readily evaluated for use  in practical applica- 
tions. Some illustrative examples a r e  given for  flowing water in  contact with Inconel 
plates of various thicknesses to demonstrate the effect of the heat capacities and the liq- 
uid and coolant temperatures on the growth of the ice layer and the temperature distribu- 
tions in the ice and wall. 

INTRODUCTION 

This report is concerned with the analysis of solidification when a convective heat 
transfer condition is imposed a t  a moving interface of a frozen layer. 
boundary condition is encountered in important applications such as the solidifying of 
metal castings in molds, freezing of rivers,  and solidification within liquid flow heat ex- 

tively little analytical work and even less experimental work has been done for conditions 
where solidification is occurring within a flowing liquid phase. 

it flows over one side of a plane wall that is convectively cooled on the opposite side. 
Initially there is no coolant flowing, and the wall and liquid are at a constant tempera- 
ture that is above the fusion temperature of the liquid. Then a coolant is introduced 
whose temperature is below the freezing temperature of the liquid. A s  the wall cools 

This type of 

* changers that use a cryogen as the coolant. A s  discussed in references 1 and 2,  rela- 

The specific configuration considered here is the solidification of a warm liquid as 

*This material was presented at the ASME Winter Annual Meeting in Pittsburg, Pa. 
Nov. 17, 1967 as Paper No. 67-WA/HT-34. 
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below the fusion temperature, the flowing liquid in contact with the plate begins to solid- 

During the transient growth period, the heat supplied to the liquid - frozen layer in- 
ify. 

terface is made up of the convection from the warm liquid and the latent heat of fusion 
generated by the freezing process. At steady state only the convective heat f lux  is sup- 
plied to the interface. The thickness of the steady-state layer is determined by the heat 
balance that this convective flux is exactly equal to the heat conducted through the frozen 
layer and wall  and convected to the coolant. 

on a thin wall. The heat capacity of the frozen layer was  accounted for, but the wall heat 
capacity was considered to be negligible. 
plications where a thick frozen layer forms on a thin wall. For  thick walls, however, 
the wall  heat capacity may be large compared with that of the frozen layer and may sig- 
nificantly retard the frozen layer growth. It is the purpose herein to develop a method 
that can be easily used to predict frozen layer growth when both the heat capacities of 
the frozen layer and the wall are accounted for. 

grated within the frozen layer and within the wall. 
tions for the temperature distributions in the two media, and an integral equation for the 
frozen layer growth; this set  of equations was solved iteratively. 
growth with time was obtained as a closed-form analytical equation that is easily evalu- 
ated for practical applications. Part of the growth relation is presented in graphical 
form so that hand calculations can be readily made. 

fication rate, several examples a r e  given for freezing of water. The examples illustrate 
the effect of varying the wall thickness, the coolant temperature, and the water tempera- 
ture. The transient temperature distributions in the ice layer and wall are also shown 
for a few example cases. 

In references 1 and 2, we investigated the transient solidification of a warm liquid 
'11 

The analytical solution was adequate for ap- * 

To obtain the frozen layer growth, the transient heat conduction equation was inte- 
This yielded coupled integral equa- 

The frozen layer 

To illustrate the influence of the wall and frozen layer heat capacities on the solidi- 

SYMBOLS 

a thickness of cooled wall 

a' dimensionless wall thickness, a/Xs 

c specific heat 

F 

G 

h 

2 

P 
frozen layer capacity term in growth equation, see eq. (26) 

integral terms defined by eq. (17b) 

convective heat- transf er coefficient 



I integral terms defined by eq. (16c) 

integral terms defined by eq. (16d) 

integral terms defined by eq. (16e) 

integral terms defined by eq. (16f) 

thermal conductivity of solidified material 

thermal conductivity of wall material 

J 

Jw 
k 

% 
L latent heat of fusion 

q heat flux in x direction 

R 

S 

T temperature 

T' 

Tk 
W 

X thickness of frozen layer 

X' 

Xs 
x 

x' dimensionless coordinate, x/Xs 

CY thermal diffusivity, k/pc 

p dimensionless coordinate, x/a 

y 

5 dimensionless coordinate, x/X 

7 

T 

T' 

+ function of y defined in eq. (27) 

Subscripts: 

C coolant 

dimensionless parameter, (Xs/k)/[(l/hc) + (a/%)] 

dimensionless parameter, c (T - Tc)/L P f  

dimensionless temperature, (T - Tf)/(Tc - Tf) 

dimensionless temperature, (Tw - Tf)/(Tc - Tf) 

wall capacity term in growth equation, see eq. (26) 

dimensionless thickness of frozen layer, X/Xs 

thickness of frozen layer at steady state 

position coordinate measured from frozen layer-wall interface 

P 

dimensionless parameter, 1 + Q/hca 
, 

time from start of solidification 

time during wall  temperature transient preceeding solidification 

dimensionless time, ThL (TI - Tf)/pLXs 

- 

f at freezing temperature 
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I? 

s steady state 

w wall 

liquid phase of solidifying substance 

1 

2 

I, 11 successive iterative approximations 

wall boundary in contact with coolant 

wall boundary in contact with solidifying material 

ANALY S IS 

The model used for  this study is the one-dimensional configuration shown in figure 1. 
The x coordinate has its origin at the interface of the frozen layer and wall, and the 
wall extends to x = -a. A warm liquid at  a fixed temperature TI flows over one side 
of the wall, and it is assumed that the convective heat-transfer coefficient h 1 
stant. A transient solidification process can then be initiated by introducing a flowing 
coolant on the other side of the wall. It is assumed that the coolant is a t  a fixed tem- 
perature Tc and provides a constant heat-transfer coefficient hc. After introduction 
of the coolant, the wall cools until the freezing temperature is reached on the surface of 
the wall (x = 0) exposed to the warm liquid. At this instant (T = 0, X ( T )  = 0) solidifica- 
tion is assumed to begin. The liquid - frozen layer interface is assumed to always be at 
the equilibrium fusion temperature Tf. 

During the solidification process latent heat of fusion is being released at the inter- 
face of the solidified layer and the flowing warm liquid. The latent heat, along with the 
convective heat being transferred from the warm liquid boundary layer to the interface, 
is conducted through the frozen layer and wall and is then transferred to the coolant. 
The coolant also removes the additional amount of heat necessary to subcool the frozen 
layer and the wall as their temperatures decrease. The solid layer continues to grow 

out the analysis. 

is a con- 

until it achieves a steady-state thickness Xs. Constant properties are assumed through- I 

I 

Steady-State Thickness of f r o z e n  Layer 

In many solidification problems the frozen layer never approaches a steady-state 
thickness; rather, it continues to grow indefinitely with time. This occurs in a lake or 
river, for example, when the entire body of liquid is already at the freezing temperature 
and is exposed to a heat sink, the cold atmosphere in this instance. The only heat 
source in such a case is latent heat of fusion which is continually extracted so  long as 
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the heat sink is present, thereby causing the frozen layer to grow continuously. 
When, however, the liquid flowing over the frozen layer is at a temperature above 

the freezing point, the warm liquid continually supplies heat to the frozen layer - liquid 
interface by convection. Under this condition the frozen layer eventually achieves a 
steady-state thickness. This thickness, which will be used as a reference length in the 
later analysis of growing layers, is derived here. 

always at the freezing temperature Tf. If the heat flow is taken as positive in the posi- 
tive x direction, the convected flux from the liquid to the liquid - frozen layer interface 
is at all times 

It is assumed that the liquid-solid interface at the boundary of the frozen layer is 

* 

. 
-q = hz(Tz - Tf) = constant 

At steady state a heat balance at  the liquid - frozen layer interface gives the relation 

Tf - Tc 

xs a 1 
-qs = h (T - Tf) = 2 1  

-+ -+ -  

This is solved for the steady-state thickness 

k T f - T c  xs = - 
hz - Tf 

For Xs = 0, equation (1) gives the relation between variables required to just avoid 
freezing. For example, solvingfor T gives 1 

= Tf + I xs=o 
Tf - Tc 

h -+- z(c 3 
To prevent freezing, the liquid temperature Tz must be equal to or  greater than the 
value given by equation (2). 
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Descript ion of Method of Analysis for Frozen Layer 

Growth and Temperature Dis t r ibut ions 

Before proceeding with the details of the analysis, it is instructive to outline the 
general features of the method. The heat flows within the frozen layer and the wall are 
governed by the one-dimensional transient heat conduction equations: 

aT 2 a T -  k- -  
2 ax 

PCP 

f o r t h e  frozen layer and 

n 

a"Tw - p  c - aTW 

Q2- ax pw a7 

for the wall. Equations (3a) and (3b) are each integrated twice with respect to the space 
coordinate x. The first integration in each medium is between one of the boundaries and 
an arbitrary position x. This results in expressions for  the local heat fluxes k(aT/ax) 
and kJaTw/ax) in terms of the heat fluxes at the boundaries which a r e  generally un- 
known. The second integration, again between one of the boundaries (not necessarily the 
same boundary used in the first  integration) and an arbitrary position x, yields the local 
temperatures T(x, T) and TW(x, T) in terms of the temperature at one boundary of each 
medium and the heat flux at  one boundary. 

In this problem the only known boundary temperature is at  the liquid - frozen layer 
interface. The instantaneous temperatures and heat fluxes a r e  unknown at  the bounda- 
ries between the solidified layer and wall and between the wall and coolant. When the 
unknown boundary heat fluxes and temperatures are eliminated by some rather lengthy 
algebraic manipulations, there results two rather complicated coupled integral equa- 
tions, one each for T(x, T) and Tw(x, T). 

which is at the known solidification temperature, an equation is obtained for the rate of 
frozen layer growth. This equation is integrated to obtain the layer growth, but the in- 
tegrated form contains integrals of T and Tw. The frozen layer growth equation and 
the two equations for T and Tw form a set of three coupled integral equations. They 
are solved by an iterative method leading to closed-form approximate analytical solu- 
tions. 

t 

i 
When the equation for T(x, T) is evaluated at the liquid - frozen layer interface, 
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Temperature Distribution Equations 
I 

Equation (3a) is integrated from any position within the frozen layer x to the solid- 
liquid interface X: 

X 
k j - - / x - k q x = P c p ~  aT Edx O l X l X  (4) 

t 

At the liquid - frozen layer interface the heat conducted into the solidified layer is equal 
t o  that supplied by the latent heat of fusion and the convection from the flowing liquid: 

4 

k s l  = p L - + h ( T  dx 
2 2 - Tf) dT ax x 

Equation (5) is substituted into equation (4) to give 

(5) 

The te rm on the left side is the heat flow in the negative x direction crossing any posi- 
tion x at any time T .  The last term on the right is the heat removed to subcool the 
portion of the solidified layer between x and X. 
the wall  x = 0 to any position x results in an expression for the instantaneous temper- 
ature distribution in  the frozen layer: 

The integration of equation (6) from 

where T2 = T2(7). 

in the wall. Integrating from the boundary in contact with the coolant x = -a to  any x 
location within the wall gives 

In a similar fashion equation (3b) is integrated to obtain the temperature distribution 
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aTW = p w c p w l a 5 ,  X - a r x s O  

X -%-I ax I-a a7 

At x = -a the boundary condition is 

aTW %ax 
where T1 = T1(7). Substituting equation (9) into (8) gives 

X 

%3l - hc(T1 - T c ) = p  
ax x 

(9) 

To obtain the temperature distribution in the wall, equation (10) is integrated again from 
x = -a to x (the use of x = 0 to x as an alternate choice for the integration limits re- 
sults ultimately in the same final expression for Tw(x, 7)): 

Equations (7) and (11) provide the temperature distributions in the frozen layer and 
wall but a r e  not yet in usable form because they contain T1 and T2 which a re  unknown 
functions of time. These temperatures can be eliminated by applying the conditions of 
continuity of temperature and heat flux that must hold at the boundary between the wall 
and frozen layer. Continuity of heat flux provides the relation 

aTW 

x= 0 
= %  aT 

kdxlx=o 

and by use of equations (6) and (10) evaluated at x = 0 this becomes 

8 



Continuity of temperature requires that at x = 0, Tw from equation (11) must equal T2; 
therefore, 

T2 - T1 = - hC (T1 - T,)a + - pwcpw Io( [ 2 d.>- (13) 

-a 
kw % 

Equation (12) yields an expression for T1 and this is substituted into equation (13) to 
obtain a relation for T2. 
(11) to yield the temperature distributions 

The T1 and T2 a r e  then substituted into equations (7) and 

T(x, T) = T, + ( 1 + - Y)[EF+:(Tz 

+ - - x + - ( T  pL dx hz - T f ) x + -  pwcpw Io( [ 2 d j d x  

-a 
kw k dr k '  

PL dx hz - -+- (Tz - Tf) -- 
h, dT h, 

- 5 jX 2 dx] + IX ([:? ->dx (14b) hc 0 
-a 
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The temperature distributions in equation (14) can then be placed in dimensionless 
form by letting x1 = x/Xs, 7' = h2(Tz - Tf)7/pLXs, X' = X/Xs, T' = (T - Tf)/(Tc - Tf), 

equation (1) in the form 
T; = ( T ~  - T~)/(T, - Tf), R = (xS/k)/[~1/hc) + (a/%)], s = c p v f  - TJ/L and using 

k (Tf - Tc) 1 + R 

This gives 

A few transformations on equations (15) a re  now made. The time derivatives a re  taken 
out of the integrals by using the rule for differentiating under an integral. 
integrals are changed into single integrals; the method fo r  accomplishing this is 
outlined in reference 1. Then the substitution (i3/aT1) = (dX'/d-rl)ea/aX')] is made. This 
yields the temperature distributions in the forms 

? 
The double 

1 
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aJ(x',X') a! 

@ W  

+- 
ax' 1 + R d7' [ ax' 

\ / L d 

where 

X' 
I(X',X') = ' J  T' dx' + X' Lx' T' dx' + l x '  x' T' dx' 

R O  

x'T& dx' W 

X' 
J(x',X') =; T' dx' + X' 6"' T' dx' 

% 

0 
J (x',X') = - - Tkx' dx' + x' TI, dx' 

R k  W 

In the temperature distribution equations (eqs. (16a) and (16b)) there st i l l  remains 
the unknown quantity dX'/dT'. This quantity is also needed so that it can be integrated 
to obtain the frozen layer growth with time. The expression for dX'/dT' can be found 
by imposing the physical boundary condition that at the liquid - frozen layer interface 
T = Tf at x = X. 
then be rearranged to yield 

This gives in  equation (16a) T' = 0 at x' = X', and equation (16a) can 

-- dX' - ~ . . .  R(l . - X') 
d7' 

dx' 

where 

X' 
G(X') = I(x' = X', X') = 11 T' dx' + lx' x'T' dx' 

R O  

11 



Equation (17a) is substituted into equations (16a) and (16b) to eliminate dX1/dT1 and 
to obtain the final forms of the temperature distributions: 

+ Rx' + Rs (5 + 5j 
dx' 

. .  

l + R  

l + R  
Tw = 

l + R  

1 
R(l  - X') - .  I 

l + " + R s ( S + ~ % )  dx' dx' 

I - _  R( l  - X') - 

l + R X ' + R s  -+ - -  (: .", 2)j 

Frozen Layer Growth 

Now return to equation (17a) and integrate to obtain the time variation of the frozen 
layer thickness. Separating the variables and integrating with the initial condition 
X1 = 0 at T' = 0 yields 

1 %  a! jX' ~ - dX' 
X' X' 

1 dG - - dx' + s - 
1 - X' dx' a!w 0 R(l - X') 1 - X' dx' 

Integrating the first term of equation (19) directly and the last two terms by parts gives 
I 
b, 
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1 

Equation (20) is the general expression that relates dimensionless frozen layer 
thickness and time. The quantities G(X') and Iw(Xf) contain the temperature distribu- 
tions Tf(xf,Xt) and T;(x',X') in the frozen layer and wall, respectively; these distribu- 
tions are provided by equations (18a) and (18b). The method of solution for the coupled 
temperature and layer growth relations will be given in the next section. The term 
IJO) in equation (20) accounts for the temperature distribution in the wall at the instant 
that solidification begins. It should be noted that the influence of the wall heat capacity 
appears as the additive terms 

4 

and 

a aJw -- 

in equations (18a) and (18b), and 

in equation (20). 

Approximate Solution by Analytical Iterations 

The temperature distributions in equation (18) depend on the instantaneous frozen 
layer thickness, and the layer growth time as given by equation (20) depends on integrals 
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of the temperature distributions. An approximate solution to this coupled se t  of equa- 
tions is obtained by an iterative technique. 

The first approximations for the frozen layer and wall temperature distributions T' 
and Tw and the growth time ?(X1) a r e  found by neglecting the effect of heat capacity i n  
both media. When c and c 

become zero. Then f rom equations (18a), (18b), and (20) the first approximations are 

a r e  set  equal to zero, the parameters S and l/aw 
P PW 

and 

R(X' - x') 
1+" 

Ti = 

l + R  ~i = -X1 - -In (1 - X') 
R 

%- 

ti 

Improved approximations for T' , T;, and ?(X1) can now be obtained by substitut- 
ing equations (2la) and (21b) into the integral quantities G, I, b, J, Jw in equations 
(18a), (18b), and (20). When the integrations a r e  carried out, the final equations for the 
second approximations take the form 

R(l - X't) 
T;CI(t,X') = 

l + R  

1 + Rx't + Rs (2 + -& 3) dx' 

l + R  
R(l - X') 

~ 

1 + Rx' + ++e 3) dx' 

where 

f' 

14 



X 5 = -  and 0 ~ 5 ~ 1  
X 

k R d p  + Rs@ + 

aW 2) 
Tk, l + R  l + R  

X') = 

x R(l - X') 

l+Rx'+m(!++-$!) dx' 

where dGI/dxt and dI /dX1 a r e  given by equations (23c) and (23d) and 
wI 

aJI Rx'  (2 + Rx')  -=  -+ -a lp  - 
ax' C ) (1 + Rxl)2 

p = -  X and - 1 : p s O  
a 

and finally 
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+ S K t - - R a l  kw 2 +-4>[ R a' X' R - In 1+" - (25) 
2 3  

k ( l + R ) ( l + R X )  ( l + R ) 2  (yW 

The solutions given by equations (23), (24), and (25) were the highest order approxi- 
mations that were carried out for the present problem. It might be possible to obtain the 
third order approximations, but the results would be so  complex that they would not be 
useful for practical problems. A numerical approach would probably be simpler than 
carrying out the third approximations. The solution equation (25), however, can be 
readily evaluated and reveals the influence of the several independent parameters. In 
reference 1 where c 

solutions differed by only a few percent from the third approximations. It seems rea- 
sonable to assume that the same behavior holds true for the solutions presented in this 
report. 

was  neglected, i t  was demonstrated that the second approximate 
PW 

Graphs for Predicting Solidified Layer Growth 

Equation (25) for  predicting frozen layer growth can be written as 

where ri, F, and W a r e  functions of X' and R only: 

- -xt - - l + R  ln(1 - X') 
R I -  
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When the specific heat of the wall is zero, l/aw = 0, the contribution arising from wall  
heat capacity will be zero; that is, the term containing W vanishes. Similarly, SF is 
the contribution from the heat capacity of the frozen layer. The term ~i is the solution 
for no heat capacity in either wall or frozen layer. 

For convenience in making quick desk calculations, the quantities T ~ ,  F, and W 
are given in figures 2(a), (b), and (c) as functions of R for various X' values. For a 
given set of imposed conditions (Tc, T2,  h,, h2, a, etc.) the R value is first computed. 
Then the dimensionless time T' to form a particular dimensionless thickness X can 
be obtained by reading the quantities from the graphs and combining them according to 
equation (26a). This gives a relation between X' and T' from which X = X ( T )  can be 
found in dimensional form by using the definitions for X' and 7'. 

DISCUSS ION 

As discussed in conjunction with the application of equation (26a), the three terms 
on the right side of the equation represent, respectively, the dimensionless growth time 
T' when all heat capacities are neglected, the contribution of the frozen layer capacity, 
and the contribution of the wall heat capacity. There are several parameters involved 
such as S, R, a/aw, and a'. A general parametric study of the effect of these inde- 
pendent parameters does not seem worthwhile, especially since equation (26a) can be 
easily evaluated for any design application. 

Before giving some illustrative examples, an examination of the last term on the 
right in equation (26a) (wall heat capacity term) will provide some additional information. 
The parameter R can be written in an alternate form: 

I 

where 

y = 1 + -  kw 
hCa 
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For  large hca and low Q, y approaches 1 as a lower limit. On the other hand, for  
large Q and small  hca, y can become very large. With this range of y in mind, the 
factor in  the last te rm of equation (26a) can be examined: 

1 A s  y -c 1, CP -5 and when y -03, CP -c 1. Hence, the CP is confined within rather nar- 
row limits of magnitude and is positive. Now the quantity W is examined to determine 
its sign. The term (X'R)/(l + R)(1 + FIX') is positive. The argument 
(1 - Xt)/(l + RX') < 1; therefore, ln(1 - X')/(l + RX') < 0, and W is positive for all X' 
and R. It is then evident that the contribution to T' by the wall heat capacity is posi- 
tive; that is, the growth time T for  a given thickness X is increased because of the 
extra heat extraction needed to cool the wall. Since the factor F is positive, the same 
effect is true for the frozen layer capacity. This is what would be expected from intui- 
tive reasoning. 

To demonstrate the type of results obtained from the analysis a few illustrative ex- 
amples are now given. 
experimental tests from reference 2 is used as a starting comparison. In those tests, 
warm water flowed over an Inconel plate that was cooled on the opposite side by flowing 
chilled alcohol. Fo r  the data shown in figure 3 the Inconel plate was 3/16 inch 
(0.476 cm) thick and a steady-state ice layer about 0.4 inch (1 cm) thick was formed. 
The data is a little above the analytical prediction, but the agreement is satisfactory for 
engineering purposes. Unfortunately the data does not provide a good check on all as- 
pects of the theory because the heat capacity terms are relatively small  for the thick- 
nesses tested. Additional data would be desirable having larger frozen layer and plate 
thicknesses. 

on the ice growth of changing some of the conditions is shown in figure 4. Figure 5 il- 
lustrates the corresponding temperature variations in the wall and frozen layer. 

Figure 4(a) differs from figure 3 only by having the wall thickness increased from 
3/16 to 1 inch (0.476 to 2. 54 cm). 
The growth curves reveal that the ice capacity has a negligible effect while the wall ca- 
pacity significantly slows the frozen layer formation. In figure 4(b) the coolant temper- 
ature is decreased from -40. 5' to -400' F (232.9' to 33.2' K) with the remaining condi- 
tions kept the same as in figure 4(a). 
steady-state ice  layer to become quite thick. As shown by the growth curves, the ice 
capacity now has a significant effect throughout the layer growth; the wall capacity is 

To choose some reasonable values for the parameters, one of the 

With the experimental test in figure 3 as a starting point, the predicted influence 

The resulting steady-state ice  layer is relatively thin. 

Lowering the coolant temperature causes the 
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only important during the early portion of the transient (the temperature distributions of 
fig. 5(b) show it is during this period that the wall  undergoes most of i ts  cooling). In fig- 
u re  4(c) the conditions remain the same as for figure 4(b) except that the water tempera- 
ture is increased from 53. 5' to 150' F (285.1' to 338.7' K). 
to  be relatively thin and provide a minor heat capacity effect; the effect of the wall ca- 
pacity is large since the wall is substantially cooled by the low temperature coolant. 

The solid lines in figure 5 show the transient temperature distributions in the wall 
and ice as computed from equations (23) and (24) for the conditions in figure 4. The 
curves in  the ice layer terminate at the various x values equal to the instantaneous ice 
thicknesses at the times shown. 

The dashed curves in figure 5 a r e  solutions to the one-dimensional transient heat 
conduction equation for the wall before the frozen layer begins to form. The solutions 
were carried out for the case where the wall was subjected to the water flow on one side 
and was initially at a uniform temperature equal to  the water temperature. 
T = 0 the convective cooling condition was applied to the other side of the wall. 
dashed curve for the largest 7- is the temperature distribution at the instant when the 
surface of the plate in contact with the water reaches 32' F (273.2' K), a t  which time 
freezing is assumed to begin. At this T the dashed curve does not agree precisely with 
the solid curve for T = 0 (as calculated from eq. (24)). This brings us  to some com- 
ments about the initial condition imposed on the freezing process. 

freezing temperature of the liquid and the heat flux into the surface is that supplied by 
convection: 

This causes the ice layer 

Then at time 
The - 

An instant before a frozen layer forms, T = 0-, the wall surface at x = 0 is at the 

Tw(x = 0, T = 0-) = Tf 

aTW %-- ax 

An instant later, T = O+, the frozen layer has just started to form and the heat balance at 
the surface becomes 

A comparison of these equations f o r  %(aT,/ax) I x Z 0  at T = 0- and T = 0' reveals 
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that the heat flux into the surface at x = 0 undergoes a step increase in heat flux by an 
amount pL(dX/dT) IxZ0 when freezing begins. The effect of this additional heat flux is 
to retard the cooling of the wall in the vicinity of x = 0. In the remainder of the wall 
this effect has not been felt at small T and the temperatures continue to decrease in the 
same manner as before the freezing started. As a result, the temperature profiles 
change in shape from those shown by the dashed curves to those shown by solid curves. 

carried out, does not reveal in precise detail the transient adjustment that occurs at 
small  T .  As shown by equation (20) the initial wall temperature distribution enters the 
successive approximations in an integrated form by means of the I,(O) term. The rea- 
sonably good agreement of the dashed and solid curves when the surface a t  x = 0 
reaches the freezing temperature shows that the freezing solution given here corre- 
sponds well with the following initial condition at the beginning of the entire transient 
process. When 7 < 0 there is no coolant flowing and the wall and flowing warm liquid 
are all isothermal at the temperature of the liquid that is flowing over one side of the 
wall. Then at 7 = 0 the coolant is introduced on the other side of the wall. 

The present solution being approximate, since only the second approximation was 

CONCLUDING REMARKS 

In this report a solidification analysis is presented for conditions that arise in some 

The problem studied is the tran- 
important engineering applications such as casting of metals in molds, heat exchangers 
using cryogenics, and freezing of ice sheets on rivers. 
sient solidification of a flowing warm liquid in contact with a plane wall that is suddenly 
cooled convectively from the opposite side. The purpose of the analysis was to derive a 
method whereby the instantaneous frozen layer thickness could be predicted at any time, 
and which would account for the heat capacities in both the frozen layer and wall. Al- 
though this is a complex problem, a closed-form analytical solution (eq. (26)) was found 
that can be easily evaluated for engineering use. Portions of the equation are presented 
in graphical form to further facilitate its use. 

To demonstrate the type of results that are  obtainable from this equation some ex- 
amples are given for ice forming on a stainless-steel plate. 
that under some conditions the heat capacities of the frozen layer and wall appreciably 
retard the frozen layer growth. 

The examples illustrate 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 18, 1967, 
129-01-11-06-22. 
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Water temperature, T = 53.5' F (285. lo K); coolant temper- 
ature, Tc = -40.5O F (b2.9'K); heat-transfer coefficients, 
h i  = 92 Btu/(hr)(ft21("F1 (522 W/(m2WoK)1, and hc = 118 
Btu/(h r)(ft2)(% (670 W/(m2)(0K)). 
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